
Data Analysis and
Visualization with R

André Batista, Ph.D. Student
andrefmb@usp.br

2016

Source: http://cns.iu.edu/images/teaching/ivmoocbook14/IVMOOC_Book_Preview.html

R Programming Language
Fundamentals

Variables & Data Structures
Data Visualization with ggplot2
Data Analysis

Statistical Testing and Prediction
Exploratory Analysis

AGENDA

This content
, available at

http://varianceexplained.org/RData/code/code_lesson1/
Others references are cited in the proper slides

Part I
R Fundamentals

R - FUNDAMENTALS

R is a de facto standard language for data analysis

Firstly, we need to set up our working environment
Working directory

Default location on the computer that R is pointing at
If you want to save or load a file, you need to know what the current
directory is

We use the functions getwd()
and setwd()

R - VARIABLES

Variables
Most basic and crucial element of R
Single numbers, vectors, matrix, data frame are the most used
variables

Examples

Primitively, R can be used
as a scientific calculator

R - VECTORS

We can create a vector consisting of multiple numeric values
by using a function c()

Subset the vector and using APPEND() function

* after = <<position>>

R - VECTORS

A lot of statistical programming in R relies on mathematical
operations applied to a vector a matrix

Basic calculator-like functions may apply to all elements in a
given vector

Operations between two vectors

Inner productVectors must have the same length

R - VECTORS

We can use the function CLASS() to
check the class of an element

We can populate a vector using SEQ()
function

random generation for the normal distribution

R - VECTORS

We can use relational and logical operator for selecting
elements in a vector

REP() function

R - VECTORS

Summary Statistics of Vectors

Generated boxplot for x

R - VECTORS

Names
Elements in a vector have names!
And we can access them using the function NAMES()

NULL implies that the elements in the vector currently do not have

Now we have

R - MATRICES
Matrices are like two-dimensional vectors, organizing values into rows and columns

The easiest way to create a matrix is using MATRIX()

A matrix cannot contain multiple data types
Here, both MA and MB contain only numeric values

R - MATRICES

Combining
Sometimes we want to combine different matrices and vectors
We can use CBIND() and RBIND() functions

As long as their lengths and dimensions are comparable. Example of error:

Combining MA and MB into a new matrix M

R - MATRICES
Extracting values from matrices is straightforward

Obtaining info about a matrix

Setting ROWNAME and COLNAME

R - ARRAYS

An array in R can have one, two or more dimensions
It is simply a vector which is stored with additional atributes
giving the dimensions and optionally names for those
dimensions

dim=c(3,4,2) means TWO
dimensions having a matrix with
FOUR columns and THREE rows each

Now, try this:
ar1 <- array(1:24, dim=c(3,4,2)) ar1[,2:3,]
ar1[2,,1] sum(ar1[,,1])
sum(ar1[1:2,,1])

R LISTS and DATA FRAMES

Lists and Data frames
Matrices are extremely useful for processing and storing large
datasets

But have several limitations that may not suit our needs (one datatype
only, for example)

List
It is a vector containing other
objects which may be of different

data types or different lengths

R LISTS and DATA FRAMES

Data Frames
Data frames are lists with a set of restrictions
It is a list of vectors which are conveniently arranged as columns
All vectors or columns in a data frame must have the same length
Data frames mimic matrices when needed and appropriate

MTCARS
R comes with built-in datasets. MTCARS contains statistics about 32
cars in 1974

Use the command View(mtcars) to display the data in a spreadsheet

R LISTS and DATA FRAMES
If you want to see only the first 6 rows, you can use the head()
function

One of the first steps when we have a data frame or a dataset is try to understand
about its statistics

DATA FRAMES

We can retrieve a specific column by name, using $columnname

Or you can use mtcars or still mtcars[, 1]
We can also obtain multiple rows at once as well: mtcars[1:3,]

How to create a new data frame?
Using data.frame function

MISSING VALUES

In R missing values are represented by the symbol (NA not
available)

Impossible values (e.g., dividing by zero) are represented by NaN

We have functions to deal with NA values, as follows:

GUIDED EXERCISE

Here we will learn by practicing with an example
We will learn

How to load files into R (e.g., CSV files)
How to deal with NA values
How to apply functions into a data frame
How to plot basic graphics

Firstly, you need to download the grades.csv from
Save the file into R workspace

This exercise is based on http://www.utsc.utoronto.ca/~sdamouras/summer/Rworkshop1.pdf

Exercise Part I

Firstly, we need to load Grades.csv into a new data frame

We have NA values in our data frame. For example, Quiz.9 is a NA
column. We can create a new grade data frame without column 13
(quiz 9) grade[, -13]

Exercise Part II

The next step is another approach for dealing with NA values.
Here we will replace all NA values for zero

How we can get
the sum of all
quizzes for each
student?

We can use the
APPLY() function

Exercise Part III

So, if we want to apply a sum, we will use FUN = sum and
this function must be applied to all rows, so MARGIN = 1
quiz.sum = apply(X=grade2[, 5:12], MARGIN = 1, FUN = sum)

Now we have the sum of all quizzes for each student!

Exercise Part IV

Now, we can calculate the final grade

Final.grade

What about to discover how good were the student final
grade?

We can generate a histogram for this!

Final.grade = quiz.sum/80*20 + grade2$Midterm.1/50*15
+ grade2$Midterm.2/50*15 + grade$Final.Exam/100*50

Final.grade <- round(Final.grade, 0)

Exercise Part V

Histogram hist(Final.grade)

Exercise Part VI

BoxPlot boxplot(Final.grade)

Exercise Part VII

We can now assign concepts for our students! For example:
FinalGrade < 50

50 <= FinalGrade < 60
60 <= FinalGrade < 70
70 <= FinalGrade < 80

FinalGrade >= 80

Exercises - VIII

Now we will generate a barplot

Exercise - IX

calculate the Midterm for each student and see the
relationship between Midterm and Final.Grade

Midterm = (grade2$Midterm.1 + grade2$Midterm.2) /2
plot(Midterm, Final.grade, pch=20)

Exercise - X

Lately we will export final grades to a new CSV using
write.csv function

write.csv(Final.grade, file="finalgrade.csv") Demonstração
Adicional

http://andrefmb.sdf.org/cursoR/graficosBasicos.html

Part II
GGPLOT2

Ggplot2 and R

A Picture really is worth a thousand words
Visual Analysis let us understand the basic nature
of the data
We will use ggplot2 a powerful R package that
produces data visualizations easily and intuitively
ggplot2 is a third package

We have to install it

Each time we reopen R, we need to load this library
using

Diamonds

ggplot2 comes with some data available to
use as demonstration
We will use the Diamonds dataset

It contains information about several attributes of
54000 diamonds
We can access it with

diamonds

Try ?diamonds
View(diamonds)

> ?diamonds

http://www.bluediamondtexas.com/images/diamond-chart.jpg

Scatterplots and Bar Graph

Interesting Questions - Diamonds

How does weight, in carats, affect the price?
affect the price?

How can we determine the relationship between attributes??
We can use, for example, a scatter plot

Scatter plot is a type of mathematical diagram using
Cartesian coordinates to display values for typically
two variables for a set of data [Wikipedia]

Aesthetics
A dimension of a graph that we can perceive visually

Color, size, shape of the points, etc.

Our first visualization
Aesthetics attributes let us communicate some dimension of the data
and understand complex relationship between them
For our first example, we use ggplot2 to create a scatterplot where we
put carat (weight) on the X axis and price, in dollars, on the Y axis

ggplot(diamonds, aes(x=carat, y=price)) + geom_point()

Our first visualization
Aesthetics attributes let us communicate some dimension of the data
and understand complex relationship between them
For our first example, we use ggplot2 to create a scatterplot where we
put carat (weight) on the X axis and price, in dollars, on the Y axis

And we obtain
ggplot(diamonds, aes(x=carat, y=price)) + geom_point()

Scatterplot with ggplot2

There are three parts to a ggplot2 graph
1. data we will be graphing in this case we a plotting
the diamonds data frame
2. Mapping the aesthetics to attributes we will be ploting

in this case we use aes() and set that X axis will be
carat and Y axis will be price
3. Layer: what type of graph it is In this case we make
a scatter plot: the name for that layer is geom_point

geom

ggplot(diamonds, aes(x=carat, y=price)) + geom_point()
Ggplot2 Geom Types

https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

Bar Graph
ggplot(diamonds, aes(x=clarity, fill=cut)) + geom_bar()

Bar Graph
ggplot(diamonds, aes(x=clarity, fill=cut)) + geom_bar()

Our second visualization with ggplot2

There are many attributes of the data we can communicate
ggplot(diamonds, aes(x=carat, y=price, color=clarity)) + geom_point()

Our second visualization with ggplot2

There are many attributes of the data we can communicate
ggplot(diamonds, aes(x=carat, y=price, color=clarity)) + geom_point()

Our second visualization with ggplot2

There are many attributes of the data we can communicate
ggplot(diamonds, aes(x=carat, y=price, color=clarity)) + geom_point()

Now every point is colored according to the quality of the
clarity of each diamond
You can see that some of the lighter diamonds are more
expensive if they have a high clarity rating, and conversely
that some of the heavier diamonds aren't as expensive for
having a low clarity rating.

Our third visualization with ggplot2

If we would rather see how the quality of the color or cut of
the diamond affects the price?

We can change the aesthetic
ggplot(diamonds, aes(x=carat, y=price, color=color)) + geom_point()

Our third visualization with ggplot2

If we would rather see how the quality of the color or cut of
the diamond affects the price?

We can change the aesthetic
ggplot(diamonds, aes(x=carat, y=price, color=color)) + geom_point()

Add more aesthetic attribute

Now, try this:
ggplot(diamonds, aes(x=carat, y=price, color=clarity, size=cut)) + geom_point()

Add more aesthetic attribute

Now, try this:
ggplot(diamonds, aes(x=carat, y=price, color=clarity, size=cut)) + geom_point()

Adding Layers
Scatter plot is only one layer of our graph
We can add additional layers besides the scatter plot using the sign
Try this:

ggplot(diamonds, aes(x=carat, y=price)) + geom_point() + geom_smooth()

Adding Layers
Scatter plot is only one layer of our graph
We can add additional layers besides the scatter plot using the sign
Try this:

ggplot(diamonds, aes(x=carat, y=price)) + geom_point() + geom_smooth()

geom_smooth()

Gray around the curve confidence interval
Suggesting how much uncertainty there is in this smoothing curve

Linear Method

Similarly, if we would rather show a best fit straight line
rather than a curve, we can change the "method" option in
the geom_smooth layer. In this case it's method="lm",
where "lm" stands for "Linear model".

ggplot(diamonds, aes(x=carat, y=price)) + geom_point() + geom_smooth(method="lm")

Linear Method

Similarly, if we would rather show a best fit straight line
rather than a curve, we can change the "method" option in
the geom_smooth layer. In this case it's method="lm",
where "lm" stands for "Linear model".

ggplot(diamonds, aes(x=carat, y=price)) + geom_point() + geom_smooth(method="lm")

Faceting

Another way we can communicate information about an
attribute is to divide our plot up into multiple plot

facet_wrap
function

We put a tilde (~) and then the attribute we would like to
ggplot(diamonds, aes(x=carat, y=price, color=cut)) + geom_point() + facet_wrap(~ clarity)

Faceting
ggplot(diamonds, aes(x=carat, y=price, color=cut)) + geom_point() + facet_wrap(~ clarity)

Faceting

We have divided it into eight subplots, each of which has a
different clarity value
We can even divide our graph based on two different
attributes, such as both color and clarity, using facet_grid
For example

In this case we have: color ~ clarity
It means: color explained by clarity
Color will be on X axis (row)
Clarity on Y axis (column)

ggplot(diamonds, aes(x=carat, y=price, color=cut)) + geom_point() + facet_grid(color ~ clarity)

Fatecing - Grid
ggplot(diamonds, aes(x=carat, y=price, color=cut)) + geom_point() + facet_grid(color ~ clarity)

Ggplot2: Title and Labels

There are many other ways to customize a plot
Firstly, we want to set a title or set the x or y axis labels
manually
We change these options adding to the end of the line of
code

ggplot(diamonds, aes(x=carat, y=price)) + geom_point() + ggtitle("My scatter plot")

Ggplot2: Title and Labels
ggplot(diamonds, aes(x=carat, y=price)) + geom_point()
+ ggtitle("My scatter plot")
+ xlab("Weight (carats)")
+ ylab("Price (Dollars)")

Limiting ranges

We can also limit the range of the x or the y axes
ggplot(diamonds, aes(x=carat, y=price)) + geom_point()
+ ggtitle("My scatter plot")
+ xlab("Weight (carats)")
+ xlim(0, 2)

Warning message: Removed 1889 rows containing missing values (geom_point).

Limiting ranges

Similarly, if we wanted to show only the y-axis from 0 to
10000 ggplot(diamonds, aes(x=carat, y=price)) + geom_point()

+ ggtitle("My scatter plot")
+ xlab("Weight (carats)")
+ ylim(0,10000) + xlim(0,2)

Histograms and Density
Curves

Histograms

Scatter plots are just one kind of graph!
Sometimes we want to look at just one dimension
of our data and observe its distribution: for that,
It is very easy: all you need to do to make a
histogram is to change your layer from
geom_point() to geom_histogram()

Histograms
ggplot(diamonds, aes(x=price)) + geom_histogram()

Another example
ggplot(diamonds, aes(x=price, fill=clarity)) + geom_histogram()

Histograms: Aesthetic

We can change the width of each bin as an options to
geom_histogram layer

ggplot(diamonds, aes(x=price)) + geom_histogram(binwidth=2000)

Histograms and Facet_wrap

ggplot(diamonds, aes(x=price)) + geom_histogram(binwidth=20) + facet_wrap(~clarity)

Histograms and Facet_wrap

Each subplot shares the same Y axis, which might make it
hard to interpret the frequencies
We can add scale=free_y

ggplot(diamonds, aes(x=price)) + geom_histogram(binwidth=20)
+ facet_wrap(~clarity, scale="free_y")

Add more information
ggplot(diamonds, aes(x=price, fill=cut))
+ geom_histogram(binwidth=20)
+ facet_wrap(~clarity, scale="free_y")

Density

Another way to view the distribution is as a density curve
ggplot(diamonds, aes(x=price)) + geom_density()

Density

We can want to divide this density curve up based on one of
attributes
ggplot(diamonds, aes(x=price, color=cut)) + geom_density()

Density

We can want to divide this density curve up based on one of
attributes
ggplot(diamonds, aes(x=price, fill=cut)) + geom_density()

Boxplots and Violin Plots

Boxplots

One common method in statistics for comparing multiple
densities is to use a boxplot
A boxplot has two attributes: an x which is usually a
classification into categories, and y, the actual variable that

within each color
ggplot(diamonds, aes(x=color, y=price)) + geom_boxplot()

Boxplots
ggplot(diamonds, aes(x=color, y=price)) + geom_boxplot()

Boxplots

ggplot(diamonds, aes(x=color, y=price)) + geom_boxplot() + scale_y_log10()

Violin Plot

Boxplots does not show details of the distribution besides
the quantiles

It works well when the data follows a Normal
distribution
But it might not work well for stranger distributions

We can instead view the distribution as a density using
violin plot

geom_boxplot to geom_violin

Violin Plot
ggplot(diamonds, aes(x=color, y=price)) + geom_violin() + scale_y_log10()

qplot

qplot

So far all of our analysis have started with a data frame
One row per observation
One column for each attribute

you want to create a histogram
Or you have two vectors and want to make a scatterplot

dataframe

Ggplot2 provides a simple way to plot one or two vectors,
which is the qplot function

Qplot - Example

Try this x = rnorm(1000)
qplot(x)

Qplot - Example

Try this x = rnorm(1000)
qplot(x)

Qplot - Example

Try this x = rnorm(1000)
y = rnorm(1000)
qplot(x,y)

Qplot - Example

Try this x = rnorm(1000)
y = rnorm(1000)
qplot(x,y)

Qplot - Example

Try this x = rnorm(1000)
y = rnorm(1000)
qplot(x,y)
+ geom_smooth()

Qplot - Example

Try this x = rnorm(1000)
y = rnorm(1000)
qplot(x,y)
+ geom_smooth()

Data Analysis and
Visualization with R

André Batista, Ph.D. Student
andrefmb@usp.br

2016

Source: http://cns.iu.edu/images/teaching/ivmoocbook14/IVMOOC_Book_Preview.html

Additional References for GGPLOT2

GGPLOT2 CHEAT SHEET
https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-
cheatsheet.pdf

